Metal specificity in DNA damage prevention by sulfur antioxidants.

نویسندگان

  • Erin E Battin
  • Julia L Brumaghim
چکیده

Metals such as CuI and FeII generate hydroxyl radical (.OH) by reducing endogenous hydrogen peroxide (H2O2). Because antioxidants can ameliorate metal-mediated oxidative damage, we have quantified the ability of glutathione, a primary intracellular antioxidant, and other biological sulfur-containing compounds to inhibit metal-mediated DNA damage caused hydroxyl radical. In the CuI/H2O2 system, six sulfur compounds, including both reduced and oxidized glutathione, inhibited DNA damage with IC50 values ranging from 3.4 to 12.4 microM. Glutathione and 3-carboxypropyl disulfide also demonstrated significant antioxidant activity with FeII and H2O2. Additional gel electrophoresis and UV-vis spectroscopy studies confirm that antioxidant activity for sulfur compounds in the CuI system is attributed to metal coordination, a previously unexplored mechanism. The antioxidant mechanism for sulfur compounds in the FeII system, however, is unlike that of CuI. Our results demonstrate that glutathione and other sulfur compounds are potent antioxidants capable of preventing metal-mediated oxidative DNA damage at well below their biological concentrations. This novel metal-binding antioxidant mechanism may play a significant role in the antioxidant behavior of these sulfur compounds and help refine understanding of glutathione function in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting how polyphenol antioxidants prevent DNA damage by binding to iron.

Prevention of oxidative DNA damage due to hydroxyl radical is important for the prevention and treatment of disease. Because of their widely recognized antioxidant ability, 12 polyphenolic compounds were assayed by gel electrophoresis to directly quantify the inhibition of DNA damage by polyphenols with Fe(2+) and H2O2. All of the polyphenol compounds have IC50 values ranging from 1-59 microM a...

متن کامل

The central role of metal coordination in selenium antioxidant activity.

Oxidative DNA damage occurs in vivo by hydroxyl radical generated in metal-mediated Fenton-type reactions. Cell death and mutation caused by this DNA damage are implicated in neurodegenerative and cardiovascular diseases, cancer, and aging. Treating these conditions with antioxidants, including highly potent selenium antioxidants, is of growing interest. Gel electrophoresis was used to directly...

متن کامل

آنتی‌اکسیدان‌ها و برخی از روش‌های متداول اندازه گیری آن‌ها، مقاله مروری

The pathology of numerous chronic diseases, such as cardiovascular dysfunctions, atherosclerosis, inflammation, carcinogenesis, drug toxicity, diabetes mellitus, aging and neurodegenerative involves oxidative damage to cellular components. When body cells use oxygen to generate energy, free radicals are created as a consequence of adenosine triphosphate (ATP) production by the mitochondria whic...

متن کامل

Stress response in cyanobacteria

Cyanobacteria are an important source of natural products. In this article, we briefly review the responses of cyanobacteria to different stresses. Abiotic stresses (temperature, salt, heavy metals, metalloid and ultraviolet (UV) influence cell growth and metabolism in cyanobacteria. Salt stress is a major abiotic factor that decrease...

متن کامل

The Antioxidant and Free Radical Scavenging Activities of Chlorophylls and Pheophytins

Chlorophylls are important antioxidants found in foods. We explored the mechanisms through which the a and b forms of chlorophyll and of pheophytin (the Mg-chelated form of chlorophyll) reduce oxidation: we used comet assay to measure prevention of H2O2 DNA damage; we tested for quenching of 1,1-diphenyl-2-picrylhydrazyl (DPPH); we measured the ability to chelate Fe(II); and, we tested their ab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of inorganic biochemistry

دوره 102 12  شماره 

صفحات  -

تاریخ انتشار 2008